
Geoff Lesur, Sep. 19th 2024

some updates

Input/output & debugging



I- Debugging updates



Reminder
Debugging in Idefix

• Always start by enabling Idefix_DEBUG in ccmake, or -DIdefix_DEBUG=ON in cmake 
and recompile 

• Keep in mind the rules of debugging: 

1. Never use pointers to the host memory space in an idefix_for 

2. Always make shallow copies of whatever you need before calling idefix_for 

3. A segmentation fault always shows up after the faulty instruction (sometimes 100s 
of lines after…) 

4. Always check that performances are what you expect

no idea what I’m talking about? check out Idefix tutorial: github.com/idefix-code/tutorial 



No more need for Kokkos kernel_logger
• Previously, when debugging a segmentation fault on GPUs, the fault could be triggered long after idefix_for was 

launched 

• We used to dynamically link Idefix with Kokkos kernel logger to force sync (see Idefix days 2023) 

• Not needed anymore: Idefix_DEBUG in cmake automatically force synchronisation at the end of each idefix_for

Time

CPU GPU queue GPU

idefix_for(… { 
    MyKernel(x,y); 
}); 

idfx::cout << « toto » << 
std::end; 

WriteStuff(); 

idefix_for(… { 
    MyKernel2(x,y); 
}); 

idefix_for(… { 
    MyKernel3(x,y); 
}); 

    MyKernel(x,y); 

   MyKernel2(x,y);

    MyKernel3(x,y); 

    MyKernel(x,y); 

    MyKernel2(x,y); 

ERROR!
ERROR!



Embedded profiler
No more space-time-stack (since v2.0.0)

• Profiling on multiple architectures is cumbersome (each manufacturer has its 
own tool: gprof, intel Vtune, AMD Perfecto, Nvidia System & Compute…) 

• We used to rely on Kokkos tools space-time-stack (e.g. idefix days 2023) 

• Now: profiler is directly embedded in idefix (no need to re-compile!). Just add 
-profile to the command line (since v2.0.0) 

• And yes, it works on any architecture, with/without MPI (the MPI version gives 
you a report per MPI process) 

• Live demo!



MPI Load balancing
available since v2.0.05

• Initially motivated by over-heated nodes on Lumi (possibly a common problem) 

• « MPI imbalance » defined as   

• Computes the imbalance between cores excluding MPI communications 

• Throws a warning if above 20%, identifying which MPI process is lagging 

• Node name is now explicitly mentioned in the log file of each process (idefix.xx.log) 

• Live demo

maxproc(tevolveStage) − minproc(tevolveStage)
⟨tevolveStage⟩proc



No more Idefix Slack
• Information on slack gets lost 

• Too expensive to get a paid account for everybody 

• Move to GitHub Discussions



II-Input & output



VTK slices
Dealing with large datasets

• For some large simulations, it becomes impossible to load the whole grid for visualisation 

• One usually needs cuts through the domain=slices 

• Idea: compute the slices on-the-fly while the code is running, and write only the slice data 

• Also useful for movie making



VTK slices
How?

• In block [Output] of your input file (idefix.ini): 

• Slice1, every : 
vtk_slice1   2.0  0  0.1  cut 

• Slice2, every : 
vtk_slice2   0.1  2  2.5  cut 

• One can have as many slices as one wishes 

• Average slices are point wise averages (no weight by cell volume)

ΔT = 2.0

ΔT = 0.1
X1

X2

X3
slice1

slice2

x0
1 = 0.1

x0
3 = 2.5

periodicity  
(float)

direction  
(integer) 

x1=0, x2=1, x3=2

offset along 
direction 

(float)

slice type 
(cut or average)



DumpImage
Load a restart dump file in Idefix

• Idefix can deal automatically with the addition of new physics upon restart (e.g restart from a 
pure hydro dump file and add dust) using the command line options: 
 —force_init -restart  

• However, Idefix restart procedure won’t work if the grid is changed 

• The way to proceed is to generate a new initial condition from an existing dump file.  
For instance: 

• Change dimensionality (restart a 2D run into 3D) 

• Change grid (increase resolution) by designing an adequate interpolation procedure



DumpImage 
How to use?

1. Open the dump file 
 
DumpImage image("mydump.dmp", &data); 

2. Use it ! 
 
for(int k, j, i) { 
  int iglob=i-2*d.beg[IDIR]+d.gbeg[IDIR]; 
  ...// same for j and k 
  d.Vc(RHO,k,j,i) = image.arrays["Vc-RHO"](kglob,jglob,iglob) 

NB: restart dump array only contains the full (global) active domain (i.e. it excludes the boundaries, but it is not decomposed accross MPI 
procs)

container for  
the dump data

Name of the array 
in the dump



Python interface
• Rationale for outputs 

• Some science project requires complex post processing (often done with Python) 

• Instead of post-processing Idefix outputs (e.g. VTK), one could directly call a Python routine fed with 
Idefix’s dataBlock 

• Rationale for inputs (initial condition) 

• Some initial conditions might require complex equilibrium computations and/or spectral 
decomposition 

• In these cases, Python can be used to compute the initial conditions thanks to all of the libraries 
available

Pydefix class, a class that allows Idefix to directly communicate with a Python interpreter



Python interface
How?

• Enable Idefix_PYTHON in cmake 

• in the [Python] block of your input file: 

• script: name of the python script file (without .py !) 

• output_function: name of the function called during output (optional) 

• initflow_function: name of the function called during flow initialisation 
(optional) 

• If using python outputs: 

• in the [Output] block, specify the period of python outputs

[Grid] 
X1-grid    1  0.0  256  u  1.0 
X2-grid    1  0.0  256  u  1.0 
X3-grid    1  0.0  1    u  1.0 

[TimeIntegrator] 
CFL         0.6 
tstop       0.5 
first_dt    1.e-4 
nstages     2 

[Hydro] 
solver    roe 

[Python] 
script               pydefix_example 
output_function      output 
initflow_function    initflow 

[Boundary] 
X1-beg    periodic 
X1-end    periodic 
X2-beg    periodic 
X2-end    periodic 
X3-beg    outflow 
X3-end    outflow 

[Output] 
log    10 
python    0.02

Live demo!



Python interface
pros and cons

• Pros: 

• No copy involved of Idefix’s dataBlockHost, we just warp IdefixArrays into numpy arrays 

• Works flawlessly when Idefix runs on GPU (python scripts however run on CPU) 

• Possible to run idefix without writing a single line of C++! (no need for a setup.cpp) 

• Cons: 

• When using MPI, each process has its own python interpreter  each python script only has access to the 
local-subdomain 

• Not possible to use python to define boundary conditions or user-defined source terms (would be a 
performance killer) 

→


