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Non-ideal MHD

Matthew Roberts

• Full 3D global numerical simulations of a protoplanetary disk

• Centered around the dead/active zone interface

• Includes ohmic and ambipolar diffusion

• Performed on the GPU-accelerated Godunov code Idefix (Lesur+2023)
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Planet formation via core-accretion

Adapted from Armitage(2011)

• Disks intially filled with 
sub-mm dust grains

• Dust accumulates at the 
inner/dead zone interface

• Agglomeration of the 
accumulated dust to form 
a planetesimal

• Assembly of 
planetesimals to form 
planets

Dust grain
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• Control the drag force, either tau or size

Where Ԧ𝑓𝑔→𝑑𝑖 = 𝛾𝑖𝜌𝑑𝑖𝜌 Ԧ𝑣𝑔 − Ԧ𝑣𝑑𝑖 =
𝜌𝑖
𝑡𝑖

Ԧ𝑣𝑔 − Ԧ𝑣𝑑𝑖 =
𝑐𝑠𝜌𝑑𝑖𝜌

𝛽𝑖
Ԧ𝑣𝑔 − Ԧ𝑣𝑑𝑖

Four possible drag laws: gamma fixes 𝛾𝑖, tau fixes 𝑡𝑖, size fixes 𝛽𝑖 and userdef is whatever you like

𝛾𝑖 =
1

𝜌𝑡𝑖

𝑡𝑖 =
𝛽𝑖
𝜌𝑐𝑠

fixed drag parameter fixed stopping time Epstein or Stokes drag law with fixed:
• Dust density 𝜌𝑠
• Dust size 𝑎
Epstein: 𝛽𝑖 = (𝜌𝑠𝑎)𝑖
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• Let us call 𝛽𝑖 the Idefix drag input parameter

• For a tau drag law 𝜏𝑖(𝑟) = 𝛽𝑖Ω𝐾 = 𝛽𝑖Ω0(𝑟/𝑟0)
−3/2

• For a size drag law 𝜏𝑖(𝑟) = 𝛽𝑖
Ω𝐾

𝜌𝑐𝑠
= 𝛽𝑖

Ω0

𝜌0𝑐0
(𝑟/𝑟0)

−
3+2𝑝+𝑞

2

Adapted from Armitage(2011)



Radial drift test setup

• Put dust mostly in a ring in the outer disk

• Run and see the radial drift

• See how well it fits with what is expected:
➢ 𝑣𝑟 =

𝑑𝑟

𝑑𝑡
=

−𝜂𝑉𝐾

𝜏𝑖+1/𝜏𝑖
  where 𝜂 = − 𝑝 + 𝑞 𝑟𝑐𝑆

2

• Try different profiles of gas density (𝑝) and sound speed (𝑞)

• Try different drag laws (tau and size) and different input parameters 𝛽𝑖
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Settling in a MRI turbulent disk (ideal MHD)

Riols & lesur (2018)



• Writing on the convergence of ideal MRI zero net flux simulations
➢How useful is the MRI quality factor ?
➢Can such simulations converge ?

• Put dust in simulations with active and dead zone of PPDs
➢How much is retained in vortices at the interface ?
➢How much is entrained onto the star or falls onto the star ?

• Longer term perspectives

Perspectives with Idefix



• Overall very happy with the code

• Very useful test setups
➢Maybe not enough with dust
➢Could use more guidance to know what test is useful for what

Complaints about Idefix

Matthew Roberts



• Overall very happy with the code

• Very useful test setups
➢Maybe not enough with dust
➢Could use more guidance to know what test is useful for what

Complaints about Idefix



Riols & Lesur (2020)-like
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