Magnetohydrodynamics and dust in the inner regions of protoplanetary disks

ALMA / ESO / NAOJ / NRAO / S. Andrews et al / AUI / NSF / S. Dagnello. ESO/H. Avenhaus et al./E. Sissa et al./DARTT-S and SHINE collaborations.

Thomas Jannaud, Henrik Latter, Matthew Roberts Idefix user days ²⁰²⁴

Inner regions

ALMA+(2014)

Inner regions

ALMA+(2014)

Inner regions

ALMA+(2014)

Ideal MHD

Adapted from Armitage(2011)

Adapted from Armitage(2011)

Matthew Roberts

- Full 3D global numerical simulations of a protoplanetary disk
- Centered around the dead/active zone interface
- Includes ohmic and ambipolar diffusion
- Performed on the GPU-accelerated Godunov code Idefix (Lesur+2023)

Matthew Roberts

Matthew Roberts

• Disks intially filled with sub-mm dust grains

Adapted from Armitage(2011)

- Disks intially filled with sub-mm dust grains
- Dust accumulates at the inner/dead zone interface

- Disks intially filled with sub-mm dust grains
- Dust accumulates at the inner/dead zone interface
- Agglomeration of the accumulated dust to form a planetesimal

- Disks intially filled with sub-mm dust grains
- Dust accumulates at the inner/dead zone interface
- Agglomeration of the accumulated dust to form a planetesimal
- Assembly of planetesimals to form planets

$$
\frac{\partial (\rho_{d_i})}{\partial t} + \vec{\nabla} \cdot (\rho_{d_i} \vec{v}_{d_i}) = 0
$$

$$
\frac{\partial (\rho_{d_i} \vec{v}_{d_i})}{\partial t} + \vec{\nabla} \cdot (\rho_{d_i} \vec{v}_{d_i} \otimes \vec{v}_{d_i}) = \rho_{d_i} \vec{g} + \vec{f}_{g \to d_i}
$$

For each dust species i

If we put dust in an inviscid gas disk at equilibrium, we expect it to:

• Quickly settle vertically towards the midplane

If we put dust in an inviscid gas disk at equilibrium, we expect it to:

- Quickly settle vertically towards the midplane
- Slowly drift radially towards the star

• Take the FargoPlanet test setup (the one with cool movies in Gaylor's presentation)

- Take the FargoPlanet test setup (the one with cool movies in Gaylor's presentation)
- Remove the planet

- Take the FargoPlanet test setup (the one with cool movies in Gaylor's presentation)
- Remove the planet

• Control the initial profiles of the sound speed c_s and gas density ρ

$$
\geq c_s^2(r) = c_0^2 r^q
$$

$$
\geq \rho(r) = \rho_0 r^p
$$

- Take the FargoPlanet test setup (the one with cool movies in Gaylor's presentation)
- Remove the planet

- Control the initial profiles of the sound speed c_s and gas density ρ
	- $\triangleright c_s^2(r) = c_0^2 r^q$ $\rho(r) = \rho_0 r^p$
- Control the drag force, either tau or size

$$
\gamma_i = \frac{1}{\rho t_i}
$$
\nWhere $\vec{f}_{g \to d_i} = \gamma_i \rho_{d_i} \rho (\vec{v}_g - \vec{v}_{d_i}) = \frac{\rho_i}{t_i} (\vec{v}_g - \vec{v}_{d_i}) = \frac{c_s \rho_{d_i} \rho}{\beta_i} (\vec{v}_g - \vec{v}_{d_i})$

\n $t_i = \frac{\beta_i}{\rho c_s}$

Four possible drag laws: \bold{g} amma fixes γ_i , \bold{tau} fixes t_i , \bold{s} ize fixes β_i and \bold{u} serdef is whatever you like

fixed drag parameter fixed stopping time Epstein or Stokes drag law with fixed:

1

- Dust density ρ_{s}
- Dust size a Epstein: $\beta_i = (\rho_s a)_i$

Parameter normalization and Stokes number

- Stokes number $\tau_i = t_i \Omega_K$ is the adimensioned stopping time
- Sets the dust radial drift speed:

$$
\triangleright \ v_r = \frac{dr}{dt} = \frac{-\eta V_K}{\tau_i + 1/\tau_i} \text{ where } \eta = -(p+q)rc_S^2
$$

Parameter normalization and Stokes number

- Stokes number $\tau_i = t_i \Omega_K$ is the adimensioned stopping time
- Sets the dust radial drift speed:

$$
\triangleright \ v_r = \frac{dr}{dt} = \frac{-\eta V_K}{\tau_i + 1/\tau_i} \text{ where } \eta = -(p+q)rc_s^2
$$

Parameter normalization and Stokes number

- Stokes number $\tau_i = t_i \Omega_K$ is the adimensioned stopping time
- Sets the dust radial drift speed:

$$
\triangleright \ v_r = \frac{dr}{dt} = \frac{-\eta V_K}{\tau_i + 1/\tau_i} \text{ where } \eta = -(p+q)rc_S^2
$$

- Let us call β_i the Idefix drag input parameter
- For a tau drag law $\tau_i(r) = \beta_i \Omega_K = \beta_i \Omega_0 (r/r_0)^{-3/2}$
- For a size drag law $\tau_i(r) = \beta_i \frac{\Omega_K}{\rho_c}$ ρc_S $=\beta_i \frac{\Omega_0}{\Omega_0 c}$ $\rho_0 c_0$ $(r/r_0)^{-\frac{3+2p+q}{2}}$ 2

Radial drift test setup

- Put dust mostly in a ring in the outer disk
- Run and see the radial drift
- See how well it fits with what is expected: $\triangleright \quad v_r = \frac{dr}{dt}$ dt $=\frac{-\eta V_K}{\tau+1/\tau}$ $\frac{-\eta V_K}{\tau_i + 1/\tau_i}$ where $\eta = -(p+q)rc_S^2$
- Try different profiles of gas density (p) and sound speed (q)
- Try different drag laws (tau and size) and different input parameters β_i

drag type: size with $p=-1.0$ q=-0.0 and $\beta_i = 0.04$

If we put dust in an inviscid gas disk at equilibrium, we expect it to:

- Quickly settle vertically towards the midplane
- Slowly drift radially towards the star

- 1D Inviscid shearing box, with dust initially far above the midplane
- Vertical stratification: $\vec{g} = -z\Omega_0^2 \vec{e}_z$ and $\rho = \rho_0 e^{-\frac{z^2}{2H}}$

- 1D Inviscid shearing box, with dust initially far above the midplane \bullet
- Vertical stratification: $\vec{g} = -z\Omega_0^2 \vec{e}_z$ and $\rho = \rho_0 e^{-\frac{z^2}{2H}}$

- 1D Inviscid shearing box, with dust initially far above the midplane
- Vertical stratification: $\vec{g} = -z\Omega_0^2 \vec{e}_z$ and $\rho = \rho_0 e^{-\frac{z^2}{2H}}$ $2H$
- Dust motion equation $\frac{d^2z}{dt^2}$ $\frac{d^2z}{dt^2} + \frac{1}{t_a}$ t_d $\frac{dz}{dt} + \Omega^2 z = 0$ admits an analytic solution for the tau drag

- 1D Inviscid shearing box, with dust initially far above the midplane
- Vertical stratification: $\vec{g} = -z\Omega_0^2 \vec{e}_z$ and $\rho = \rho_0 e^{-\frac{z^2}{2H}}$ $2H$
- Dust motion equation $\frac{d^2z}{dt^2}$ $\frac{d^2z}{dt^2} + \frac{1}{t_a}$ t_d $\frac{dz}{dt} + \Omega^2 z = 0$ admits an analytic solution for the tau drag

Settling in a MRI turbulent disk (ideal MHD)

Comparisons to Fromang & Papaloizou(2006), Okuzumi & Hirose (2011), Zhu, Stone & Bai (2015)…

Settling in a MRI turbulent disk (ideal MHD)

Comparisons to Fromang & Papaloizou(2006), Okuzumi & Hirose (2011), Zhu, Stone & Bai (2015)…

Perspectives with Idefix

• Writing on the convergence of ideal MRI zero net flux simulations

➢How useful is the MRI quality factor ?

➢Can such simulations converge ?

• Put dust in simulations with active and dead zone of PPDs

➢How much is retained in vortices at the interface ?

➢How much is entrained onto the star or falls onto the star ?

• Longer term perspectives

Complaints about Idefix

- Overall very happy with the code
- Very useful test setups
	- ➢Maybe not enough with dust
	- ➢Could use more guidance to know what test is useful for what

I don't think so! I guess if I were to be super pedantic (for when you have larg \vee data sets) it would be great if you could choose which quantities (either user defined or otherwise) are output in the full VTK files and in the VTK slices/ averages distinctly - $11:24$

Matthew Roberts

Complaints about Idefix

- Overall very happy with the code
- Very useful test setups

➢Maybe not enough with dust

➢Could use more guidance to know what test is useful for what

Riols & Lesur (2020)-like